\qquad

C.U.SHAH UNIVERSITY

Summer Examination-2020

Subject Name: Mathematical Methods - I

Subject Code: 5SC03MAM1
Semester: 3

Date: 27/02/2020

Branch: M.Sc. (Mathematics)

Time: 02:30 To 05:30 Marks: 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

SECTION - I

Q-1
 Attempt the Following questions

a) Write Euler's formula for Fourier coefficient of $f(x)$.
b) Define: Finite Fourier sine transform
c) State Dirichlet's condition.
d) Complete the formula: $F_{s}\{f(x) \cos a x\}=$ \qquad .

Q-2 Attempt all questions

Find the Fourier series of $f(x)=x+x^{2} ;-\pi<x<\pi$. Hence deduce that
a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\pi^{2} / 6$.
b) Prove that $f(x)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4}$,
where $f(x)=\left\{\begin{array}{cl}-k & ,-\pi<x<0 \\ k & , 0<x<\pi\end{array}\right.$
c) State and prove Parseval's Formula.

OR

Q-2 Attempt all questions

a) Find a Fourier series of $f(x)=1+\sin x ;-1<x<1$.
b) Obtain the Fourier expansion of $f(x)=\sinh x$ in $(-\pi, \pi)$.
c) Using the Fourier series expansion of $f(x)=\frac{(\pi-x)^{2}}{4}$ in $(0,2 \pi)$, and hence deduce that $f(x)=\frac{\pi^{2}}{12}+\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos n x$.

Q-3
Attempt all questions
a) State and prove Fourier integral theorem.
b) Solve: $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ given that $u_{x}(0, t)=u_{x}(6, t)=0$ and $u(x, 0)=2 x$, where $0<x<6$ and $t>0$
c) Solve the Fourier transform of $f(x)=\left\{\begin{array}{c}a-|x|, \text { if }|x|<a \\ 0, \text { if }|x|>a\end{array}\right.$ and hence evaluate $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{2} d t$ and $\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{4} d t$.

Q-3

Q-4

Q-5 Attempt all questions
a) Find: $L\left(t\left(\frac{\cos t}{e^{t}}\right)^{2}\right)$
b) Evaluate: $\int_{0}^{\infty} e^{-t} \int_{0}^{t} \frac{\sin u}{u} d u d t$
b) Evaluate: $\int_{0}^{\infty} e^{-s t}\left(4+\cos ^{2} 2 \theta\right) d t+\int_{0}^{\infty} e^{-s t} \sin ^{2} 2 \theta d t$
c) Find the Z-transform of $\cos n \theta$.
d) State Final value theorem for Z-transform.
a) Find: $L^{-1}\left(\frac{1}{\left(s^{2}+4\right)^{2}}\right)$

SECTION - II

c) Find the Fourier cosine and sine transform of $x e^{-a x}$.

Attempt all questions
Solve the heat conduction problem described by
a)

PDE: $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}, 0<x<\infty, t>0$
BC: $u(0, t)=0, t>0$
IC: $u(x, 0)=f(x), 0<x<\infty$,
and $u, \frac{\partial u}{\partial x}$ both tend to zero as $x \rightarrow \infty$, by using Fourier sine transform.
b) Express $f(x)=\left\{\begin{array}{l}e^{k x} ; x<0 \\ e^{-k x} ; x<0\end{array}\right.$ as a Fourier integral and show that
$\frac{\pi}{2 k} e^{-k x}=\frac{2}{\pi} \int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^{2}+k^{2}} d \lambda, x>0, k>0$.

Attempt the Following questions
c) Using convolution theorem evaluate :
i. $\quad L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}$.
ii. $\quad L^{-1}\left\{\frac{1}{s^{2}(s+1)^{2}}\right\}$.
d) State and prove first shifting theorem.

OR

Q-5 Attempt all questions

a) Solve $\frac{d x}{d t}+\frac{d y}{d t}+x-y=e^{-t}, \frac{d x}{d t}+\frac{d y}{d t}+2 x+y=e^{t}$ by using Laplace transforms.

Where $x(0)=1, y(0)=0$.
b) Find: $L\left(t^{2} \sin a t\right)$
c) If $f(t)=\left\{\begin{array}{l}3,0 \leq t \leq 5 \\ 0, t>5\end{array}\right.$ then find $L\left(f^{\prime}(t)\right)$.

Attempt all questions

a) Write Rodrigues formula, generating function for Hermite polynomials and also first three Hermite polynomials.
b) Find Z-transform for the following:
i) $a^{n} \sin n \theta$
ii) $n^{2} e^{a n}$
c) Find $Z^{-1}\left(\frac{2 z(2 z-1)}{z^{3}-5 z^{2}+8 z-4}\right)$.

OR

Q-6 Attempt all Questions

a) Solve $\frac{d y}{d t}+2 y+\int_{0}^{t} y(t) d t=\sin t ; y(0)=1$ by using Laplace transforms.
b) State and prove multiplication by n rule for Z-transform and also write its generalized form.
State and prove convolution theorem for Z-transform and evaluate
c) $\quad Z^{-1}\left(\frac{z^{2}}{(z-2)^{2}}\right)$.

