Exam Seat No: _____

C.U.SHAH UNIVERSITY Summer Examination-2020

Subject Name: Mathematical Methods - I

Subject Code: 5SC03MAM1		Branch: M.Sc. (Mathematics)	
Semester: 3	Date: 27/02/2020	Time: 02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)	
	a)	Write Euler's formula for Fourier coefficient of $f(x)$.	(02)	
	b)	Define: Finite Fourier sine transform	(02)	
	c)	State Dirichlet's condition.	(02)	
	d)	Complete the formula: $F_s \{f(x) \cos ax\} = $	(01)	
Q-2		Attempt all questions	(14)	
	a)	Find the Fourier series of $f(x) = x + x^2$; $-\pi < x < \pi$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \pi^2/6$.	(07)	
	b)	Prove that $f(x) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$,	(04)	
		where $f(x) = \begin{cases} -k & , -\pi < x < 0 \\ k & , 0 < x < \pi \end{cases}$		
	c)	State and prove Parseval's Formula.	(03)	
OR				
Q-2		Attempt all questions	(14)	
	a)	Find a Fourier series of $f(x) = 1 + \sin x$; $-1 < x < 1$.	(05)	
	b)	Obtain the Fourier expansion of $f(x) = \sinh x$ in $(-\pi, \pi)$.	(05)	
	c)	Using the Fourier series expansion of $f(x) = \frac{(\pi - x)^2}{4}$ in $(0, 2\pi)$, and hence	(04)	
		deduce that $f(x) = \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$.		
Page 1 of 3				

Q-3 Attempt all questions

a) State and prove Fourier integral theorem.

b) Solve:
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 given that $u_x(0,t) = u_x(6,t) = 0$ and $u(x,0) = 2x$, where (05)
 $0 < x < 6$ and $t > 0$

c) Solve the Fourier transform of
$$f(x) = \begin{cases} a - |x|, if |x| < a \\ 0, if |x| > a \end{cases}$$
 and hence evaluate (04)

$$\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt \text{ and } \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt.$$

Attempt all questions

OR

(14)

(05)

(14)

a) Solve the heat conduction problem described by PDE: $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$, $0 < x < \infty$, t > 0BC: u(0,t) = 0, t > 0IC: u(x,0) = f(x), $0 < x < \infty$, and u, $\frac{\partial u}{\partial x}$ both tend to zero as $x \to \infty$, by using Fourier sine transform. (07)

b) Express
$$f(x) = \begin{cases} e^{kx}; x < 0\\ e^{-kx}; x < 0 \end{cases}$$
 as a Fourier integral and show that (04)

$$\frac{\pi}{2k}e^{-kx} = \frac{2}{\pi}\int_{0}^{\infty}\frac{\cos\lambda x}{\lambda^{2}+k^{2}}\,d\lambda, \ x > 0, k > 0.$$

c) Find the Fourier cosine and sine transform of
$$xe^{-ax}$$
. (03)

Q-4

Q-3

Attempt the Following questions (07) Find: $I^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

a) Find:
$$L^{-1}\left(\frac{1}{\left(s^2+4\right)^2}\right)$$
 (02)

b) Evaluate:
$$\int_{0}^{\infty} e^{-st} \left(4 + \cos^2 2\theta\right) dt + \int_{0}^{\infty} e^{-st} \sin^2 2\theta dt$$
(02)

- c) Find the Z-transform of $\cos n\theta$. (02)
- **d**) State Final value theorem for Z-transform. (01)

Q-5 Attempt all questions

a) Find:
$$L\left(t\left(\frac{\cos t}{e^t}\right)^2\right)$$
 (04)

b) Evaluate:
$$\int_{0}^{\infty} e^{-t} \int_{0}^{t} \frac{\sin u}{u} du dt$$
 (03)

(14)

c) Using convolution theorem evaluate :

i.
$$L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$$
.
ii. $L^{-1}\left\{\frac{1}{s^2(s+1)^2}\right\}$.

d) State and prove first shifting theorem.

Q-5 Attempt all questions

a) Solve
$$\frac{dx}{dt} + \frac{dy}{dt} + x - y = e^{-t}$$
, $\frac{dx}{dt} + \frac{dy}{dt} + 2x + y = e^{t}$ by using Laplace transforms. (07)

OR

Where
$$x(0) = 1, y(0) = 0$$
.

Attempt all Questions

b) Find:
$$L(t^2 \sin at)$$
 (04)

c) If
$$f(t) = \begin{cases} 3, \ 0 \le t \le 5\\ 0, \ t > 5 \end{cases}$$
 then find $L(f'(t))$. (03)

Q-6 Attempt all questions (14)

b) Find Z-transform for the following:
i)
$$a^n \sin nQ$$
 ii) $n^2 a^{an}$

c) Find
$$Z^{-1}\left(\frac{2z(2z-1)}{z^3-5z^2+8z-4}\right)$$
.

a) Solve
$$\frac{dy}{dt} + 2y + \int_{0}^{t} y(t) dt = \sin t; y(0) = 1$$
 by using Laplace transforms. (06)

b) State and prove multiplication by *n* rule for Z-transform and also write its (04) generalized form.

State and prove convolution theorem for Z-transform and evaluate

c)
$$Z^{-1}\left(\frac{z^2}{(z-2)^2}\right).$$
 (04)

(04)

(03)

(14)

(05)

(04)

(14)

Q-6